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Abstract
The Fourier spectral density of the Thue–Morse sequence is reinterpreted as
the invariant measure of a stochastic dynamical system. Based on this fact, its
generalized (Rényi) dimension and f (α) statistics are calculated with high
precision by cycle expansions of spectral determinant and dynamical zeta
function. αq at integer values of q are also computed in an operator scheme
and the asymptotic result in the large-q limit is derived.

PACS numbers: 02.50.−r, 05.45.−a

1. Introduction

The Thue–Morse sequence is one of the most famous automatic sequences [1, 2]. This
infinite binary sequence is constructed by starting from the seed K0 = {1} and iteratively
expanding the sequence according to the inflation rule, 1 → 1,−1 and −1 → −1, 1,
e.g. K1 = {1,−1},K2 = {1 − 1,−1, 1} and K3 = {1 − 1,−1, 1,−1, 1, 1,−1}.

Being viewed as a prototype of a self-similar linear structure or time series which is
neither regular nor random, the Thue–Morse sequence has been intensively studied in many
fields of physics, such as solid-state physics, nonlinear dynamics and quantum chaos (see, for
example, [3–9] and references therein). The marginal nature of the Thue–Morse sequence is
best described by its Fourier spectral density, which is determined by ρ(x) ≡ limn→∞ ρ(n)(x),
where ρ(0) = 1 and

ρ(n+1)(x) = (1 − cos 2πx)ρ(n)(2x). (1.1)

Correspondingly, ρ(x) is neither the sum of δ-functions (Bragg peaks) nor an ordinary
continuous function. It produces a singular continuous measure instead [3].

Although the connection of peaks of ρ(x) with periodic orbits of the Bernoulli map,
x → 2x(mod 1), is rather evident, a quantitative study of this connection, especially from
the viewpoint of nonlinear dynamics, is still lacking. In this paper we study the multifractal
statistics of the Thue–Morse spectral density in the periodic orbit theory [10]. This paper is
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organized as follows. In section 2, we relate ρ(x) to the equilibrium density of a stochastic
dynamical system and its multifractal statistics to the leading eigenvalue of a Frobenius–
Perron-like operator Lq . In section 3 we calculate the eigenvalue by cycle expansions of
the spectral determinant and dynamical zeta function. For comparison, we discuss briefly in
section 4 the finite Markov chain approximation. Section 5 is devoted to the case when q is an
integer, which reexplains and extends the results of [6]. We discuss the asymptotic behaviour
when q → ∞ in section 6, which is followed by a concise summary and discussion.

2. Stochastic model and multifractal analysis

We rewrite equation (1.1) as

ρ(n+1)(x) =
∫ 1

0
L(x, x ′)ρ(n)(x ′) dx ′ ≡ [Lρ(n)](x), (2.1)

where

L(x, x ′) = (1 − cos 2πx)[δ(2x − x ′) + δ(2x − x ′ − 1)]

= sin2 π

2
x ′δ
(

x − x ′

2

)
+ cos2 π

2
x ′δ
(

x − x ′ + 1

2

)
. (2.2)

The form of L suggests that we can interpret it as the evolution operator of a stochastic
dynamical system, in which x is mapped to fσ (x) = (x + σ)/2 with probability pσ (x) =
1
2 [1 − (−1)σ cos πx] for σ = 0, 1. Equivalently, L describes a stochastic process of binary
sequences,

. . . s2, s1, s0, s−1, s−2, . . .

with conditional probability given by

P(sk+1|sksk−1sk−2 . . .) = psk+1(xk), (2.3)

where sj ∈ {0, 1} and xk = ∑∞
j=0 sk−j 2−j−1. According to this interpretation, ρ(x) is the

invariant density of the stochastic process and the probability of finding a segment of sequence
is given by the integration of ρ(x) over an interval, e.g.

P(0) =
∫ 1/2

0
ρ(x) dx = 1

2
, P (01) =

∫ 1/2

1/4
ρ(x) dx ≈ 0.385 169 706 934.

Obviously, P(S) satisfies

P(S0) + P(S1) = P(0S) + P(1S) = P(S) (2.4)

and ∑
|S|=l

P (S) = 1 (2.5)

for an arbitrary binary sequence S and integer l, where |S| denotes the length of S. The second
part of equation (2.4) indicates that ρ(x) is invariant under the Bernoulli map (shift).

P(S) generally decreases exponentially with the increase of sequence length. Moreover,
the exponents differ for different sequences. For example, P((01)l) ∼ (

3
4

)2l
, P ((0011)l) ∼(√

5
4

)4l
. One may ask what is the relative proportion of the sequences when they are categorized

according to their decay exponents. This naturally leads to the multifractal analysis of the
Thue–Morse spectral density, of which a basic assumption is that the number of sequences
that decay as P(S) ∼ ( 1

2

)α|S|
is of the order of 2f (α)|S|.
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For a convenient calculation of f (α), one usually first considers the summation

∑
|S|=l

P q(S) ∼
∫ (

1

2

)l(qα−f (α))

dα. (2.6)

When l → ∞, equation (2.6) implies

∑
|S|=l

P q(S) ∼
(

1

2

)lτq

, (2.7)

where

τq = min
α

{qα − f (α)} = qαq − f (αq) (2.8a)

with αq determined by f ′(αq) = q. τq is related to the generalized (Rényi) dimension Dq by
Dq = τq/(q − 1). So f (α) can be obtained from τq by an inverse Legendre transformation,
i.e.,

f (αq) = qαq − τq, (2.8b)

where αq = dτq

dq
.

In most cases, τq has to be acquired by a log–log fit according to its definition. However,
in our case, it can be shown that

τq = − log λq

log 2
, (2.9)

where λq is the leading eigenvalue of operator Lq :

Lq(x, x ′) = eq log 1
2 (1−cos 2πx)

∑
σ

δ(x − fσ (x ′)) ≡ eqA(x)
∑

σ

δ(x − fσ (x ′)) (2.10)

(see appendix A). Moreover, according to the perturbation theory,

1

λq

dλq

dq
= 1

λq

〈φq | ∂
∂q
Lq |ρq〉

〈φq |ρq〉 = 1

λq

〈φq |ALq |ρq〉
〈φq |ρq〉 = 〈φq |A|ρq〉

〈φq |ρq〉 (2.11)

where ρq (or φq) is the right (or left) eigenvector of Lq corresponding to eigenvalue λq and A

is understood as a diagonal operator, i.e., A(x, x ′) = A(x)δ(x − x ′).
In this paper we shall calculate λq by cycle expansions and, for comparison, finite Markov

chain approximation. Before doing this, let us consider two simple cases, which had been
discussed in [3, 6]. One is q = 0. Since ρ0(x) = φ0(x) = 1 and λ0 = 2, we have τ0 = −1
and, according to equation (2.11),

α0 = − 1

log 2

∫ 1

0
A(x) dx = 2. (2.12)

Another is q = 1. Note that L1 = L, λ1 = 1, ρ1(x) = ρ(x) and φ1(x) = 1,

D1 = α1 = − 1

log 2

∫ 1

0
A(x)ρ(x) dx = 1 − 1

log 2

∫ 1

0
log(1 − cos 2πx)ρ(x) dx. (2.13)

Then D1 can be calculated to very high precision by making use of a technique of convergence
acceleration. In this paper, we also generalize this technique to the case when q is an arbitrary
positive integer.
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3. Cycle expansion

An idea of great importance in chaotic dynamics is that the spectrum of eigenvalues is dual to
the spectrum of periodic orbits [11]. Although the reason why the eigenvalues of an operator
supported by chaotic dynamics can be efficiently extracted from the information of periodic
orbits is physically profound and mathematically hard, the calculation is, at least in our case,
rather standard. In the following we give a self-contained description of the computation
scheme. For a more detailed discussion of the periodic orbit theory, we refer readers to the
web book [11].

We first reduce the system according to the reflection symmetry, x ↔ 1−x. By identifying
x with 1 − x, we restrict x ∈ [0, 1

2

]
and rewrite Lq(x, x ′) as

Lq(x, x ′) = eqA(x)[δ(x − f+(x
′)) + δ(x − f−(x ′))], (3.1)

where

f+(x) = x

2
and f−(x) = 1 − x

2
(3.2)

are the two branches of the inverse of the Baker’s map.
Then consider the trace

tr
(
Lt

q

) =
∫ 1

2

0
Lt

q (x, x) dx, (3.3)

t = 1, 2, . . . . This leads to the trace formula

tr

(
zLq

1 − zLq

)
=

∞∑
t=1

zt tr
(
Lt

q

) =
∑

p

∞∑
r=1

np erqApzrnp

1 − dr
p

, (3.4)

where p denotes a prime periodic orbit of the Baker’s map. np,Ap and dp are explained as
follows. It is well known that the periodic orbits of the Baker’s map are coded by binary
sequences. For 
 = σk · · · σ2σ1, σi ∈ {+,−}, define

f
(x) ≡ fσk
◦ · · · fσ2 ◦ fσ1(x). (3.5)

Equation (3.3) is evaluated at each fixed point of f
, |
| = t , which can be arranged into the
sum over prime periodic orbits whose periods are divisors of t. For a prime periodic orbit
coded by 
, np = |
|, dp = f ′


 = ( 1
2

)np (or −( 1
2 )np ) if the number of ‘−’ contained in 
 is

even (or odd) and Ap is the sum of A(x) over the periodic orbit. For example,

eA+ = eA(0) = 0,

eA− = eA(1/3) = 3/4,

eA+− = eA(1/5)+A(2/5) = 5/16,

eA++− = eA(1/9)+A(2/9)+A(4/9) = 3/64,

eA+−− = eA(1/7)+A(2/7)+A(3/7) = 7/64.

The trace formula diverges at the reciprocal of each eigenvalue of Lq . This fact enables
us to determine λq from its convergent radius. A more powerful method is to find the smallest
zero of the spectral determinant det(1 − zLq), which is formally related to the trace formula
by

−z
∂

∂z
log det(1 − zLq) = tr

(
zLq

1 − zLq

)
, (3.6)

or the dynamical zeta function 1/ζ(z),
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Table 1. τq and αq calculated by cycle expansions and finite Markov chain approximation (FMCA).
k in the first column denotes the maximal cycle length or the order of Markov chain. The ‘exact’
values of τq and αq are calculated by the cycle expansion of the spectral determinant at k = 10.

τq αq
q = 0.5
k det(1 − zLq ) 1/ζ(z) FMCA det(1 − zLq ) 1/ζ(z) FMCA

1 – – −0.386 0.4 0.4 1
2 −0.28 −0.38 −0.397 0.6 0.6 1.0
3 −0.395 −0.405 −0.402 0.84 0.90 0.94
4 −0.403 1 −0.403 3 −0.403 1 0.904 0.910 0.915
5 −0.403 423 −0.403 43 −0.403 3 0.908 28 0.908 0 0.910
6 −0.403 426 10 −0.403 425 8 −0.403 40 0.908 374 4 0.908 4 0.909
7 −0.403 426 114 58 −0.403 426 116 −0.403 421 0.908 374 996 0.908 370 0.9085

Exact −0.403 426 114 600 98 . . . 0.908 374 997 952 66 . . .

1/ζ(z) = �p(1 − znp eqAp ). (3.7)

The dynamical zeta function is an approximation of the spectral determinant if dp in the trace
formula is omitted.

Based on the data of all periodic orbits whose lengths do not exceed an integer k, the
trace formula is calculated as a polynomial of order k, from which the spectral determinant
is obtained according to equation (3.6). A crucial step is that the spectral determinant is also
expanded as a k-order polynomial of z. This truncation is reasonable since the higher order
terms will be effectively cancelled by the contributions of the longer periodic orbits which
have not yet been included. Similarly, the dynamical zeta function is constructed as a k-order
polynomial from the same set of periodic orbits. For example, when k = 3,

tr

(
zLq

1 − zLq

)
≈ 1

2

(
3

4

)q−1

z +
1

4

[
3

(
9

16

)q−1

+ 2

(
5

16

)q−1
]

z2

+
1

8

[
3

(
27

64

)q−1

+ 3

(
7

64

)q−1

+

(
3

64

)q−1
]

z3,

det(1 − zLq) ≈ 1 − 1

2

(
3

4

)q−1

z − 1

4

[(
9

16

)q−1

+

(
5

16

)q−1
]

z2

− 1

8

[(
7

64

)q−1

+
1

3

(
3

64

)q−1

−
(

15

64

)q−1

− 1

3

(
27

64

)q−1
]

z3

and

1/ζ(z) ≈ 1 −
(

3

4

)q

z −
(

5

16

)q

z2 −
[(

7

64

)q

+

(
3

64

)q

−
(

15

64

)q]
z3.

Finally, zq = 1/λq is obtained by numerically solving the smallest zero of a polynomial
H(z) and its derivative is calculated according to

1

λq

∂λq

∂q
= − 1

zq

∂zq

∂q
= 1

zq

∂H

∂q

/
∂H

∂z

∣∣∣∣
z=zq

. (3.8)

The convergence of τq and αq is typically very fast. For the dynamical zeta function, it is
exponential while for spectral determinant, it is even faster (see table 1). This is in accordance
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Figure 1. f (α) curve for the Thue–Morse sequence. Note that the right part of this curve is
absent due to the singularity of A(x) at x = 0 [3]. The asymptotic curve is calculated according
to τq ≈ ( 3

4 )q (1 + γ
q
+ ) (see equation (6.4)).

with results in a general chaotic system with complete symbolical dynamics [11]. The f (α)

curve is shown in figure 1. Here we point out two notable phenomena.
One is that the convergence of spectral determinant becomes poor if q is too close to 0.

This is related to the singularity of A(x) at x = 0. In fact, if A(x) is bounded, then

tr

(
zL0

1 − zL0

)
=

∞∑
k=1

2k−1zk

(
1

1 − 2−k
+

1

1 + 2−k

)
=

∞∑
k=1

(2z)k

1 − 2−2k
, (3.9)

which implies

det(1 − zL0) = �∞
j=0(1 − 21−2j z) (3.10)

is an entire function of z and its coefficient ck of series expansion decays faster than any power
of k. However, A(0) = −∞ in our case, and hence

tr

(
zL0

1 − zL0

)
=

∞∑
k=1

zk

(
2k−1 − 1

1 − 2−k
+

2k−1

1 + 2−k

)
=

∞∑
k=1

(2z)k

1 − 2−2k
− zk

1 − 2−k
, (3.11)

which implies that

det(1 − zL0) = �∞
j=0(1 − 21−2j z)

�∞
j=0(1 − 2−j z)

= (1 − 2z)

�∞
j=0(1 − 4−j z)

(3.12)

is no longer an entire function. Instead, it has poles at z = 4j , j = 0, 1, . . . , and, consequently,
ck tends to a finite number when k → ∞ and the convergence of z0 is only as 2−k . From the
viewpoint of continuity, this singularity will affect the rate of convergence at small q.

Another interesting fact is that, if q is an integer, the spectral determinant produces the
exact λq (or τq) when k � q + 1 (for example, see table 2). This fact implies that det(1 − zLq)

is a polynomial of order q + 1. We shall discuss this fact in more detail in section 5.

4. Finite Markov chain approximation

Owing to its conceptual simplicity and numerical facility, approximating a stochastic process
by a Markov chain of finite order is always a physically appealing approach. Once the
approximated transfer matrix is obtained (see appendix A), we calculate its leading eigenvalue
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Table 2. Same as table 1. The exact value of τq is 3 − log(1 +
√

17)/ log 2 [5].

τq αq
q = 2
k det(1 − zLq ) 1/ζ(z) FMCA det(1 − zLq ) 1/ζ(z) FMCA

1 1.4 0.8 0.4 0.4 0.4 1
2 0.53 0.51 0.69 0.51 0.55 0.7
3 0.642 981 363 139 42 0.71 0.61 0.56 0.58 0.6
4 0.642 981 363 139 42 0.62 0.65 0.574 58 0.566 0.59
5 0.642 981 363 139 42 0.651 0.638 0.574 665 7 0.581 0.5739
6 0.642 981 363 139 42 0.640 0.644 0.574 666 108 0.572 0.5766
7 0.642 981 363 139 42 0.644 0.643 0.574 666 109 1368 0.576 0.5741

Exact 0.642 981 363 139 42 . . . 0.574 666 109 137 05 . . .

by using the well-known power method. As a byproduct, we obtain also its right and left
eigenvectors, which can be used to estimate αq according to equation (2.11).

The convergence of the finite Markov chain approximation (FMCA) is a little slower
than that of the dynamical zeta function if we identify the order of Markov chain with the
maximal cycle length. (Of course, the numerical costs of the two methods at the same level
of approximation are not identical.) Compared with the cycle expansion of the spectral
determinant, the rate of convergence is, especially when q is large, rather poor. However,
FMCA is more informative since it provides also the eigenfunctions. It should be pointed out
that since ρq(x) is a generalized function, we cannot expect, for almost every point x ∈ [0, 1],
a well-defined limit of ρq(x) when the order of Markov chain goes to infinity. Instead, we
can only obtain vectors with violent fluctuations on an increasingly small scale. Moreover, in
the coarse-grained picture we generally have ρq(x) = c[ρ(x)]q . Several ρq(x) and φq(x) are
shown in figure 2, from which we can see that, with the increase of q, ρq(x) becomes more
and more localized at the periodic orbit

{
1
3 , 2

3

}
and its stable manifold while the smoothness

of φq(x) keeps unchanged.

5. Case of integer q

It was found that τq for integer values of q can be related to the leading eigenvalue of a finite
dimensional, q × q in fact, matrix [6]. This matrix, as we shall show, naturally arises when
we restrict L†

q to a finite invariant subspace. Note that

[
L†

qf
]
(x) = sin2q

(π

2
x
)

f
(x

2

)
+ cos2q

(π

2
x
)

f

(
x + 1

2

)
, (5.1)

in the symmetric space with basis {en = cos(2nπx)}n�0, the action of L†
q is represented by

L†
qe2n = 1

22q−1

[ q

2 ]∑
k=−[ q

2 ]

(2q)!

(q − 2k)!(q + 2k)!
e|n+k| (5.2)

and

L†
qe2n+1 = − 1

22q−1

[ q+1
2 ]∑

k=−[ q−1
2 ]

(2q)!

(q − 2k + 1)!(q + 2k − 1)!
e|n+k|. (5.3)
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Figure 2. Some ρq and φq calculated by Markov chain of order 10. The eigenfunctions plotted

are scaled to
∫ 1

0 ρq(x) = ∫ 1
0 φq(x) = 1.

It can be easily verified that {e0, e1, . . . , eq} span an invariant subspace of L†
q , which we denote

by Sq . Moreover, Sq is a sink in the sense that for any en /∈ Sq we have L†k
q en ∈ Sq if k is

sufficiently large. One may infer from this fact that the non-zero component of the spectrum
of L†

q is given by its restriction within Sq , which we denote by Mq , e.g.

M1 = 1

2

[
2 −1
0 −1

]
, M2 = 1

8


6 −4 1

2 −4 6
0 0 1


 , M3 = 1

32




20 −15 6 −1
12 −16 20 −15
0 −1 6 −15
0 0 0 −1


 .

Obviously, the leading eigenvalue of Mq is determined by its first q × q block, which is, up
to a constant, identical with the matrix constructed in [6]. Furthermore, assume that Lq and
L†

q have the same spectrum, then we have

det(1 − zLq) = det(1 − zMq) (5.4)
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is a (q + 1)-order polynomial of z. We give a rigorous proof of equation (5.4) in appendix B,
where a counter example is also presented to show the insufficiency of the above reasoning.
We point out that a similar result, i.e., the spectral determinant is given by a polynomial, has
also been established in some systems by quite different methods [18].

Then we consider the eigenfunctions. Denote the right and left eigenvectors of Mq

corresponding to the leading eigenvalue by (u0, u1, . . . , uq)
T and (v0, v1, . . . , vq) respectively,

then

φq =
q∑

j=0

ujej and ρq =
q∑

j=0

vj e
∗
j +

∞∑
j=q+1

cj e
∗
j ≡ ρ(0)

q + ρ ′
q, (5.5)

where e∗
j is the dual state of ej , i.e., e∗

0 = e0 and e∗
j = 2ej for j > 0. φq and ρq are scaled to

〈φq |ρq〉 =∑j ujvj = 1 and cj ’s can be determined by the relation

cj = 〈ej |ρq〉 = 1

λk
q

〈ej |Lk
q |ρq〉 = 1

λk
q

〈
L†k

q ej

∣∣ρ(0)
q

〉
, (5.6)

where k is an integer that ensures L†k
q ej ∈ Sq .

Equation (5.6) can be refined to an efficient algorithm to calculate the average of f (x)

with respect to the density given by ρq(x). By iterating the procedure

〈f |ρq〉 = 〈Pqf |ρq〉 + 〈(1 − Pq)f |ρq〉
= 〈f |ρ(0)

q

〉
+

1

λq

〈
L†

q(1 − Pq)f
∣∣ρq

〉
, (5.7)

where Pq =∑q

j=0 |ej 〉〈e∗
j | is the projection operator of Sq , we have

〈f |ρq〉 =
∞∑

k=0

〈
f (k)

∣∣ρ(0)
q

〉
(5.8a)

where

f (k) =
[

1

λq

L†
q(1 − Pq)

]k

f. (5.8b)

Equation (5.8) converges very fast if f (x) is a smooth function in (0, 1). To get this excellent
convergence, let us calculate αq = 〈f |ρq〉, where

f (x) = − 1

log 2
A(x)φq(x) = 2φq(x) +

1

log 2

∞∑
j=1

q∑
l=0

ul

j
[ej+l (x) + e|j−l|(x)].

The results for several q’s are listed in table 3, from which we can see that, especially for large
q, the convergence is even faster than the cycle expansion of the spectral determinant.

6. Large-q limit

As suggested by the behaviour of ρq , with the increase of q, the behaviour of Lq is more
and more dominated by the periodic orbit

{
1
3 , 2

3

}
with code ‘−’. In fact, it was found

that λq → eqA− = (
3
4

)q
when q → ∞ [6]. In this section we derive a higher order

asymptotic correction. For convenience, we scale Lq to L̃q = ( 4
3

)qLq , or, equivalently, A(x)

to Ã(x) = A(x) − A
(

1
3

)
.

The fast convergence of the cycle expansion of the dynamical zeta function is guaranteed
by the fact that the contribution of a periodic orbit is, on the whole, determined by its length.
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Table 3. τq calculated according to equation (5.8). Comparing it with the cycle expansion of the
spectral determinant, we can see that the two methods yield the identical 14 digits.

〈f (k)|ρ(0)
q 〉

k q = 2 q = 3 q = 4 q = 5

0 0.057 802 330 305 33 1.004 936 532 649 72 0.456 674 436 625 05 0.021 728 026 996 66
1 0.515 190 258 970 08 −0.517 318 288 473 71 −0.013 486 500 813 89 0.403 444 068 082 03
2 0.001 651 036 299 67 0.000 072 274 766 79 −0.000 001 565 961 87 −0.000 000 124 377 09
3 0.000 022 325 014 79 −0.000 000 211 560 57 −0.000 000 001 787 65 0.000 000 000 026 69
4 0.000 000 158 214 87 0.000 000 000 348 26 −0.000 000 000 000 90 –
5 0.000 000 000 332 15 −0.000 000 000 000 12 – –
6 0.000 000 000 000 15 – – –
αq 0.574 666 109 137 05 0.487 690 307 730 38 0.443 186 368 060 74 0.425 171 970 728 28

However, for an intermittent system where the dynamics is strongly influenced by a marginal
stable periodic orbit, the cycle expansion according to the cycle length generally converges
very slow. To deal with this difficulty, one must construct a resummation scheme for the cycle
expansion based on the cycle contributions (see, for example, [11–16]). This is what occurred
in our case. Since the contribution of a periodic orbit is largely controlled by the number of ‘+’
contained in its code sequence, we rewrite the symbolic code as (j) ≡ +−j , (jk) ≡ +−j +−k

and so on. Then the dynamical zeta function is expanded according to the length of the new
symbolic sequence, i.e.,

1/ζ(z) = �p(1 − znp eqÃp ) = (1 − z)

{
1 −

∑
j

[j ]zj+1 −
∑
j<k

([jk] − [j ][k])zj+k+2

−
∑

j<k<l

([jkl] + [j lk] − [j ][kl] − [k][j l] − [l][jk] + [j ][k][l])zj+k+l+3

−
∑
j =k

([jkk] − [k][jk])zj+2k+3 − · · ·
}
, (6.1)

where [j ] ≡ eqÃ(j) , [jk] ≡ eqÃ(jk) , [jkl] ≡ eqÃ(jkl) , etc. Note that [k1k2] ∼ [k1][k2], [k1k2k3] ∼
[k1][k2][k3], . . . , for sufficiently large ki’s, good cancellation can be expected in expansion
(6.1). Therefore, an appropriate truncation of this expansion may yield a reasonable asymptotic
expression of the zero of 1/ζ(z). For example, when the first two items of equation (6.1) are
retained, we have

1/ζ(z) ≈ (1 − z)


1 −

∞∑
j=0

[j ]zj+1


 = (1 − z)


1 −

∞∑
j=0

(
[j ] − γ

q
+

)
zj+1


− γ

q
+ z = 0, (6.2)

where

γ+ ≡ lim
j→∞

eÃ(j) = 0.363 247 682 720 01 . . . , (6.3)

which implies zq ∼ 1 − γ
q
+ , or

λq ∼ ( 3
4

)q(
1 + γ

q
+

)
. (6.4)

Similarly, if one more term in equation (6.1) is included, we have

λq ∼ ( 3
4

)q(
1 + γ

q
+ + γ

q
+−+

)
, (6.5)
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Figure 3. Asymptotic behaviour of λq, r(1) ≡ |( 4
3 )qλq − 1|, r(2) ≡ |( 4

3 )qλq − 1 − γ
q
+ |, r(3) ≡

|( 4
3 )qλq − 1 − γ

q
+ − γ

q
+−+| (see equation (6.5)).

where

γ+−+ ≡ lim
j→∞

eÃ(1j) = 0.223 172 892 216 68 . . . . (6.6)

(For numerical verification of the asymptotic result, see figure 3.)

7. Summary and discussion

In this paper we first interpret the Fourier spectral density of the Thue–Morse sequence as
the equilibrium state of a stochastic dynamical system. Then its multifractal statistics, τq , is
determined by the leading eigenvalue of a Frobenius–Perron-like operator Lq , which has been
calculated by cycle expansions and, for comparison, finite-order Markov chain approximation.
The cycle expansion of the spectral determinant converges very fast unless q is too close to
0, where the convergence is affected by poles. In the case of q being an integer, it is found
that det(1 − zLq) is a polynomial of order q + 1 and the nonzero part of the spectrum of Lq

is given by a (q + 1) × (q + 1) matrix, which is obtained by restricting L†
q within a (q + 1)-

dimensional invariant subspace. Moreover, a convergence acceleration algorithm to calculate
αq is generalized to this case. Finally, by expanding the dynamical zeta function in a new
symbolic scheme based on cycle contributions, we derive an asymptotic expression of τq in
the large q limit.

We have studied the statistical property of the Thue–Morse sequence by cycle expansions
in the periodic orbit theory. The method is powerful and, of course, not restricted to this
problem [11]. However, there are some open questions. The most interesting one is what
happens when q is close to an integer. For example, does Lq have finite number of nonzero
eigenvalues? If it does, how does it change when q runs from k to k + 1? Or, if not, how
do the many zeros of the spectral determinant collapse when q → k? We note that the left
eigenfunction of Lq can be extended to a smooth function on S1, i.e., when 1 is identified with
0, only if q is an integer. This fact may be important to the answer. Another question concerns
the asymptotic expansion of λq . It is interesting to note that, although we start from periodic
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orbits, the final result is in fact expressed in terms of homoclinic orbits. It is not clear whether
similar result can be established in general chaotic systems with intermittent dynamics.
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Appendix A. Multifractal analysis based on Markov model

In this appendix we give a proof of equation (2.9). Since the dependence of sk+1 upon sk−j

decays as 2−j , we can approximate the stochastic process by a Markov chain of finite order,
i.e.,

P(sk+1|sksk−1sk−3 . . .) ≈ P (k)(sk+1|sksk−1sk−3 . . . s1), (A.1)

for sufficiently large k. The transfer probability P (k)(σ |S) can be evaluated from pσ (x), for
example, at the middle point of the corresponding interval. For S = sksk−1 · · · s1, denote
σsk−1sk−2 · · · s2 by Fσ S, σ = 0, 1. Then the finite transfer matrix is given by

T (S ′, S) =
{
P (k)(σ |S) if S ′ = Fσ S

0 otherwise.
(A.2)

Accordingly, the probability to find a very long sequence σjσj−1 · · · σ1S0 is given by

P(σjσj−1 · · · σ1|S0)P (S0) = T (Sj , Sj−1)T (Sj−1, Sj−2) · · · T (S1, S0)P (S0), (A.3)

where S1 = Fσ1S0, S2 = Fσ2S1, . . . Sj = Fσj
Sj−1. Consider∑

|S ′|=j+k

P q(S ′) =
∑

σj ,σj−1···σ1

∑
S0

P q(σjσj−1 · · · σ1|S0)P
q(S0). (A.4)

The summation over σi’s can be replaced by that over Si’s, i.e.,∑
|S ′|=j+k

P q(S ′) =
∑

Sj ,Sj−1...S0

[T (Sj , Sj−1)T (Sj−1, Sj−2) · · · T (S1, S0)P (S0)]
q

=
∑
Sj ,S0

〈Sj |T j
q |S0〉P q(S0) ∼ λj

q, (j → ∞) (A.5)

where the matrix Tq is defined according to

Tq(S
′, S) =

{
[T (S ′, S)]q if T (S ′, S) > 0
0 if T (S ′, S) = 0

(A.6)

and λq is its leading eigenvalue. Note that Tq is the discrete version of the operator Lq and
comparing equation (A.5) with equation (2.7), we prove equation (2.9).

Appendix B. Trace at integer q

In this appendix we give a proof of equation (5.4), in particular, we prove

tr
(
Ln

q

) = tr
(
Mn

q

)
, (B.1)

for arbitrary positive integers q and n. For convenience, we first consider the problem in the
full space. The left-hand side of equation (B.1) is defined by

tr
(
Ln

q

) =
∫ 1

0
Ln

q(x, x) dx = 1

1 − 2−n

2n−1∑
i=0

�n−1
j=0

[
1 − cos(2t2πxi)

2

]q

, (B.2)
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where xi = i/(2n − 1) are fixed points of the n-iteration of the Bernoulli map, while the
right-hand side is given by

tr
(
Mn

q

) =
q∑

j=−q

〈E∗
j |L†n

q |Ej 〉, (B.3)

where Ej (x) = ei2jπx and E∗
j = E−j . Note that there is no complex conjugation in our

definition of inner product, i.e., 〈f |g〉 = ∫ 1
0 f (x)g(x) dx, and, in the full space, Mq as the

restriction of L†
q within the invariant subspace spanned by {Ej }|j |�q is a (2q + 1) × (2q + 1)

matrix.
Because

[Lqf ](x) = 2

[
1 − cos(2πx)

2

]q

f (2x), (B.4)

we can rewrite equation (B.2) in a form similar to equation (B.3), i.e.,

tr
(
Ln

q

) = 1

2n − 1

2n−1∑
i=1

[
Ln

qE0
]
(xi) =

q∑
j=−q

〈Ej (2n−1)|Ln
q |E0〉 (B.5)

=
q∑

j=−q

〈E0|L†n
q |Ej (2n−1)〉. (B.5)

In deriving equation (B.5) we have made use of the facts that
[
Ln

qE0
]
(0) = 0 and∑k

j=1 Em(j/k) = k (or 0) if m is (or is not) a multiple of k.

The action of L†
q in the basis {Ej } is given by

L†
qEj =

∑
k

〈E∗
k |L†

q |Ej 〉Ek (B.6)

where

〈E∗
k |L†

q |Ej 〉 =
∫ 1

0
2

[
1 − cos(2πx)

2

]q

ei(j−2k)2πx dx. (B.7)

From equation (B.7) we can see immediately that, for arbitrary integer l,

〈E∗
k+l|L†

q |Ej+2l〉 = 〈E∗
k |L†

q |Ej 〉, (B.8a)

which can be readily generalized to

〈E∗
k+l|L†n

q |Ej+2nl〉 = 〈E∗
k |L†n

q |Ej 〉. (B.8b)

From equation (B.8) we obtain our conclusion,

tr
(
Ln

q

) =
q∑

j=−q

〈E∗
0 |L†n

q |Ej (2n−1)〉 =
q∑

j=−q

〈E∗
−j |L†n

q |E−j 〉 = tr
(
Mn

q

)
.

Then we take the reflection symmetry into consideration. In the symmetric space, similar
to equation (B.5), we have

tr
(
Ln

q

) = 〈e0|L†n
q

∣∣∣∣∣∣e0 +
q∑

j=1

[ej (2n−1) + ej (2n+1)]

〉
. (B.10)
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Substituting ej by (Ej + E−j )/2, we have

tr
(
Ln

q

) = 1

2

q∑
j=−q

〈E∗
0 |L†n

q |[Ej (2n−1) + Ej (2n+1)]〉

= 1

2

q∑
j=−q

〈E∗
−j |L†n

q |[E−j + Ej ]〉

= 1

4

q∑
j=−q

〈[E∗
−j + E∗

j ]|L†n
q |[E−j + Ej ]〉

=
q∑

j=0

〈e∗
j |L†n

q |ej 〉 = tr
(
Mn

q

)
. (B.11)

Finally, we explain why the reasoning in section 5 is insufficient to justify that det(1−zLq)

is a polynomial. Let us consider a counterexample. Since the same reasoning can be applied
to the case when A(x) is replaced by

A(x, η) = log

[
1 − η cos 2πx

2

]
(|η| � 1), (B.12)

one may infer that det(1 − zLq) = det(1 − zMq) also holds in this case. However, it can be
easily shown that this is not true. In fact, since eA(0) = 0, we have

tr
(
Ln

q

) = tr
(
Mn

q

)
+

eqnA(0)

1 − 2−n
= tr

(
Mn

q

)
+

∞∑
j=0

[
(1 − η)q

2q+j

]n

(B.13a)

in the full space and

tr
(
Ln

q

) = tr
(
Mn

q

)
+

eqnA(0)

2n − 2−n
= tr

(
Mn

q

)
+

∞∑
j=0

[
(1 − η)q

2q+2j+1

]n

(B.13b)

in the symmetric space. Consequently,

det(1 − zLq) = det(1 − zMq)�
∞
j=0

(
1 − z

(1 − η)q

2q+j

)
(B.14a)

and

det(1 − zLq) = det(1 − zMq)�
∞
j=0

(
1 − z

(1 − η)q

2q+2j+1

)
(B.14b)

in the full and symmetric spaces, respectively. According to equation (B.14), the spectrum
of Lq consists of two components, one comes from the finite-dimensional matrix Mq and
the other is given by an infinite geometric series. The two parts of spectra correspond to
eigenvectors in different function spaces, i.e., C∞(S1) for the former and C∞([0, 1]) for the
latter.

References

[1] Thue A 1906 Norske Vidensk Selsk. Skr. I. Mat. Nat. Kl. Christiania 7 1
[2] Morse M 1921 Trans. Am. Math. Soc. 22 84
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[11] Cvitanović P, Artuso R, Mainieri R, Tanner G and Vattay G 2005 Chaos: Classical and Quantum,

ChaosBook.org (Copenhagen: Niels Bohr Institute)
[12] Dahlqvist P 1992 J. Phys. A: Math. Gen. 25 6265
[13] Dahlqvist P 1997 J. Phys. A: Math. Gen. 30 L351
[14] Tanner G and Wintgen D 1995 Phys. Rev. Lett. 75 2928
[15] Dettmann C P and Cvitanović P 1997 Phys. Rev. E 56 6687
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